Training Calendar

An Introduction to Machine Learning using Stata Co Developed with Lancaster University

Online 2 days (26th October 2020 - 27th October 2020) Stata Intermediate, Introductory


Recent years have witnessed an unprecedented availability of information on social, economic, and health-related phenomena. Researchers, practitioners, and policymakers now have access to huge datasets (so-called “Big Data”) on people, companies and institutions, web and mobile devices, satellites, etc., at increasing speed and detail.

Machine learning is a relatively new approach to data analytics, which places itself in the intersection between statistics, computer science, and artificial intelligence. Its primary objective is to turn information into knowledge and value by “letting the data speak”. Machine learning limits prior assumptions on data structure, and relies on a model-free philosophy supporting algorithm development, computational procedures, and graphical inspection more than tight assumptions, algebraic development and analytical solutions. Computationally unfeasible few years ago, machine learning is a product of the computer’s era, of today machines’ computing power and ability to learn, of hardware development and continuous software upgrading.

This course is a primer to machine learning techniques using Stata. Today, various machine learning packages are available within Stata, but some of tghese are not known to all Stata users. This course fills this gap by making participants familiar with Stata's potential to draw knowledge and value from rows of large, and possibly noisy data. The teaching approach will be based on the graphical language and intuition more than on algebra. The sessions will make use of instructional as well as real-world examples, and will balance theory and practical sessions evenly.

After the course, participants are expected to have an improved understanding of Stata's potential to perform machine learning, becoming able to master research tasks including, among others:

  • factor-importance detection,
  • signal-from-noise extraction,
  • correct model specification,
  • model-free classification, both from a data-mining and a causal perspective.

Course Agenda

    DAY 1
    Session 1 (10:00-12:00 GMT): The basics of Machine Learning
    Machine Learning: definition, rational, usefulness
  • Supervised vs. unsupervised learning
  • Regression vs. classification problems
  • Inference vs. prediction
  • Sampling vs. specification error
  • Coping with the fundamental non-identifiability of E(y|x)
  • Parametric vs. non-parametric models
  • The trade-off between prediction accuracy and model interpretability
  • Goodness-of-fit measures
  • Measuring the quality of fit: in-sample vs. out-of-sample prediction power
  • The bias-variance trade-off and the Mean Square Error (MSE) minimization
  • Training vs. test mean square error
  • The information criteria approach
  • Estimating training and test error
  • Validation set, K-fold cross-validation, and the Bootstrap

  • Session 2 (14:00-16:00 GMT): Model Selection and regularization
    Model selection as a correct specification procedure
  • The information criteria approach
  • Subset Selection
  • Best subset selection
  • Backward stepwise selection
  • Forward stepwise Selection
  • Shrinkage Methods
  • Lasso and Ridge, and Elastic regression
  • Adaptive Lasso
  • Information criteria and cross validation for Lasso
  • Stata implementation

    DAY 2
    Session 1 (10:00-12:00 GMT):Discriminant analysis and nearest-neighbor classification
  • The classification setting
  • Bayes optimal classifier and decision boundary
  • Misclassification error rate
  • Discriminant analysis
  • Linear and quadratic discriminant analysis
  • Naive Bayes classifier
  • The K-nearest neighbours classifier Stata implementation

    Session 2 (14:00-16:00 GMT): Neural networks
    The neural network model
  • Neurons, hidden layers, and multi-outcomes
  • Training a neural networks
  • Back-propagation via gradient descent
  • Fitting with high dimensional data
  • Fitting remarks
  • Cross-validating neural network hyperparameters Stata implementation

    Session 3 (16:00-17:00 GMT): Q&A session with the instructor
    The neural network model
  • Neurons, hidden layers, and multi-outcomes
  • Training a neural networks
  • Back-propagation via gradient descent
  • Fitting with high dimensional data
  • Fitting remarks
  • Cross-validating neural network hyperparameters Stata implementation
Reading List:
  • The Elements of Statistical Learning: Data Mining, Inference, and Prediction, Hastie, T., Tibshirani, R., Friedman, J., Springer (2009)
  • An Introduction to Statistical Learning, Gareth, J., Witten, D., Hastie, T., Tibshirani, R., Springer (2013)
  • Microeconometrics Using Stata, Cameron e Trivedi, Revised Edition, StataPress (2010)
  • A Super-Learning Machine for Predicting Economic Outcomes, Giovanni Cerulli


Some knowledge of basic statistics, Stata and econometrics is required, including:

  • The notion of conditional expectation and related properties;
  • point and interval estimation;
  • regression model and related properties;
  • probit and logit regression.

Terms & Conditions

  • Student registrations: Attendees must provide proof of full time student status at the time of booking to qualify for student registration rate (valid student ID card or authorised letter of enrolment).
  • Additional discounts are available for multiple registrations. Contact us for more information.
  • Temporary, time limited licences for the software(s) used in the course will be provided. You are required to install the software provided prior to the start of the course. Alternatively, laptops can be hired for a fee of $20.00 per day.
  • If you need assistance in locating hotel accommodation in the region, please notify us at the time of registration.
  • Full payment of course fees is required prior to the course start date to guarantee your place.
  • Registration closes 5-calendar days prior to the start of the course.

Cancellations or changes to your registration

  • 100% fee returned for cancellations made over 28-calendar days prior to start of the course.
  • 50% fee returned for cancellations made 14-calendar days prior to the start of the course.
  • No fee returned for cancellations made less than 14-calendar days prior to the start of the course.

The number of seats available is restricted. Please register early to guarantee your place.

All prices exclude VAT or local taxes where applicable.

* Required Fields

Post your comment

Timberlake Consultants