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Standardized/Marginal Effects

With the introduction of the margins command in Stata 11,
enabled estimation of standardized/marginal effects through
regression adjustment.

If the statistical model is sufficient for confounding control then
certain contrasts of marginal/standardized effects can be
interpreted as causal effects.

margins is a very powerful command, but did not do what I
want to do for survival data.
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Marginal Effects and Causal Inference

X - is a binary exposure: 0 (unexposed) and 1 (exposed).
Y - is is an outcome (binary or continuous).
Y 0 - is the potential outcome if X is set to 0.
Y 1 - is the potential outcome if X is set to 1.

Some outcomes are counterfactual.

Average causal effects are contrasts between the expected value
of the potential outcomes.

For example, the average causal difference is

E [Y 1]− E [Y 0]

Have to make assumptions as do not observe counterfactual
outcomes
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With survival data

With survival data

X - is a binary exposure: 0 (unexposed) and 1 (exposed).
T - is is a survival time.
T 0 - is the potential survival time if X is set to 0.
T 1 - is the potential survival time if X is set to 1.

The average causal difference is

E [T 1]− E [T 0]

This is what stteffects can estimate.

However, we often have limited follow-up and calculating the
mean survival makes very strong distributional assumptions.
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Limited follow-up

Often limited follow-up in survival studies

0.0

0.2

0.4

0.6

0.8

1.0
S(

t)

0 1 2 3 4 5
Years from surgery

Weibull (AIC: 1330.21)
LogLogistic (AIC: 1323.83)
LogNormal (AIC: 1320.77)
Ggamma (AIC: 1322.59)
Gompertz (AIC: 1347.77)

Mean is area under curve - large variation after end of follow-up

Paul C Lambert Simulation 6 September 2018 5



Limited follow-up

Often limited follow-up in survival studies

0.0

0.2

0.4

0.6

0.8

1.0
S(

t)

0 20 40 60 80 100
Years from surgery

Weibull (AIC: 1330.21)
LogLogistic (AIC: 1323.83)
LogNormal (AIC: 1320.77)
Ggamma (AIC: 1322.59)
Gompertz (AIC: 1347.77)

Mean is area under curve - large variation after end of follow-up

Paul C Lambert Simulation 6 September 2018 5



Limited follow-up

Often limited follow-up in survival studies

0.0

0.2

0.4

0.6

0.8

1.0
S(

t)

0 20 40 60 80 100
Years from surgery

Weibull (AIC: 1330.21)
LogLogistic (AIC: 1323.83)
LogNormal (AIC: 1320.77)
Ggamma (AIC: 1322.59)
Gompertz (AIC: 1347.77)

Mean is area under curve - large variation after end of follow-up
Paul C Lambert Simulation 6 September 2018 5



Marginal Survival functions

Rather than use mean survival we can define our causal effect in
terms of the marginal survival function.

E [T 1 > t]− E [T 0 > t]

We can limit t within observed follow-up time.

Alternatively, we can write this as,

E [S(t|X = 1,Z )]− E [S(t|X = 0,Z )]

Note that this is the expectation over the distribution of
confounders Z .
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Estimation

Estimation of a marginal survival function is based on predicting
a survival function for each individual and taking an average.

1

N

N∑
i=1

Ŝ (t|Xi = 1,Zi)−
1

N

N∑
i=1

Ŝ (t|Xi = 0,Zi)

We force everyone to be exposed and then everyone to be
unexposed.

We use their observed covariate pattern, Zi .

Epidemiologists call this model based or regression
standardization[1].

Also know as marginal effect or G-computation.

Can restrict to a subset of the population, e.g. the average
causal effect in the exposed.
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Flexible Parametric Models

We do a lot of work with flexible parametric survival models.

These are parametric survival models where we use splines to
model the effect of the time scale.

For example, on the log cumulative hazard scale is a follows,

ln[H(t|xi)] = ηi(t) = s (ln(t)|γ, k0) + xiβ

s() is a restricted cubic spline function.

We can transform to the survival and hazard scales

S(t|xi) = exp(− exp [ηi(t)])) h(t|xi) =
ds (ln(t)|γ, k0)

dt
exp [ηi(t)]
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Why use flexible parametric models?

Parametric model allows simple prediction of survival, hazard
and related functions for any covariate pattern at any time
point, t[2].

Using splines gets around many of the limitations of standard
parametric models.

Extension to time-dependent effects (non-proportional hazards)
is simple.

Implemented in stpm2 [3, 4]
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Example

I will use the Rotterdam breast cancer data: 2,982 women
diagnosed with primary breast cancer.

Observational study, but interest lies in comparing those taking
and not taking hormonal therapy (hormon).

Outcome is all-cause mortality.

In a simplified analysis I will consider the following confounders.

age Age at diagnosis

enodes Number of positive lymph nodes (transformed).

pr 1 Progesterone receptors (fmol/l) (transformed)-

Paul C Lambert Simulation 6 September 2018 10



Kaplan-Meier Curves
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Just looking at unadjusted estimate, treatment appears worse.
Paul C Lambert Simulation 6 September 2018 11



Introducing confounders

For simplicity I will just look at selected confounders.

. tabstat age nodes pr, by(hormon)

Summary statistics: mean

by categories of: hormon (Hormonal therapy)

hormon age nodes pr

no 54.09762 2.326523 168.706

yes 62.54867 5.719764 108.233

Total 55.05835 2.712274 161.8313

Those taking treatment tend to be older and have more severe
disease.
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Hazard ratios from a Cox model

Unadjusted.

------------------------------------------------------------------------------

_t | Haz. Ratio Std. Err. z P>|z| [95% Conf. Interval]

-------------+----------------------------------------------------------------

hormon | 1.540262 .132659 5.02 0.000 1.301016 1.823503

------------------------------------------------------------------------------

Adjusted

------------------------------------------------------------------------------

_t | Haz. Ratio Std. Err. z P>|z| [95% Conf. Interval]

-------------+----------------------------------------------------------------

hormon | .7905871 .071509 -2.60 0.009 .6621526 .9439334

age | 1.013249 .0024118 5.53 0.000 1.008533 1.017987

enodes | .1135842 .0110469 -22.37 0.000 .0938712 .137437

pr_1 | .9066648 .0119291 -7.45 0.000 .883583 .9303496

------------------------------------------------------------------------------

Effect of treatment changes direction after adjustment.
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Same hazard ratios for stcox and stpm2

stcox and stpm2 will give very similar hazard ratios[2].
Advantage of stpm2 is that as a parametric model it is very
simple to predict various measures for any covariate pattern at
any point in time (both in and out of sample).

. estimate table stpm2 cox, keep(hormon age enodes pr_1) eform se eq(1:1)

Variable stpm2 cox

hormon .79064318 .79058708

.07150772 .07150904

age 1.0132442 1.0132488

.00241191 .00241185

enodes .11325337 .11358424

.01101349 .0110469

pr_1 .90648552 .90666481

.01192822 .01192914

legend: b/se
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This is our stpm2 model

. stpm2 hormon age enodes pr_1, scale(hazard) df(4) nolog eform
Log likelihood = -2668.4925 Number of obs = 2,982

exp(b) Std. Err. z P>|z| [95% Conf. Interval]

xb
hormon .7906432 .0715077 -2.60 0.009 .66221 .9439854

age 1.013244 .0024119 5.53 0.000 1.008528 1.017983
enodes .1132534 .0110135 -22.40 0.000 .0935998 .1370337

pr_1 .9064855 .0119282 -7.46 0.000 .8834055 .9301685
_rcs1 2.632579 .073494 34.67 0.000 2.492403 2.780638
_rcs2 1.184191 .0329234 6.08 0.000 1.121389 1.25051
_rcs3 1.020234 .0150787 1.36 0.175 .9911046 1.05022
_rcs4 .996572 .0073038 -0.47 0.639 .9823591 1.010991
_cons 1.101826 .17688 0.60 0.546 .80439 1.509244

Note: Estimates are transformed only in the first equation.
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Using stpm2 standsurv

stpm2 standsurv is a post estimation command for stpm2.
Can be used for standardized survival curves and contrasts, but
also

Standardized restricted mean survival time.
Standardized hazard functions
Centiles of standardized survival functions.
User defined functions.
External standardization
Combined with IPW weights.
All options work for both standard and relative survival models.

Faster and does more than the meansurv option in stpm2’s
predict command

Variances estimated using delta method or M-estimation[5].
Implemented in Mata. Uses analytical derivatives, so fast.
Thanks to Michael Crowther for helping me understand pointers
and structures!
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Using stpm2 standsurv

. range tt 0 10 101

(2,881 missing values generated)

. stpm2_standsurv, at1(hormon 0) at2(hormon 1) timevar(tt) ci ///

> contrast(difference) ///

> atvars(S_hormon0 S_hormon1) contrastvar(Sdiff)

Predict at 101 equally spaced observations between 0 and 10.

Two standardized curves and their difference will be calculated.

For each of the at() options 2,982 survival curves will be
estimated and averaged.
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Standardized survival curves
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Difference in standardized survival curves
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Standardize within a subgroup

. stpm2_standsurv if hormon==0, at1(hormon 0) at2(hormon 1) ci ///

> timevar(tt) contrast(difference) ///

> atvars(S_hormon0b S_hormon1b) contrastvar(Sdiffb)
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Other Standardized Measures

We can derive other functions of the standardized curves

Restricted mean survival

RMST (t∗) = E [min(T , t∗)]

RMSTs(t
∗|X = x ,Z ) =

∫ t∗

0

E [S(u|X = x ,Z )] du

and is estimated by

R̂MST s(t
∗|X = x ,Z ) =

∫ t∗

0

1

N

N∑
i=1

S(u|X = x ,Z = zi)du

We can then take contrasts (differences or ratios).
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RMST Example

. stpm2_standsurv, at1(hormon 0) at2(hormon 1) ci ///

> timevar(tt) contrast(difference) rmst ///

> atvars(RMST_hormon0 RMST_hormon1) contrastvar(RMST_diff)
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RMST Example
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Hazard of the marginal survival function

Apply standard transformation from survival to hazard of
marginal survival function.

Marginal hazard

h(t) = − d

dt
ln (E [S(t|X = x ,Z )])

and is estimated by

ĥs(t) =

∑N
i=1 Ŝ(t|X = x ,Z = zi)ĥ(t|X = x ,Z = zi)∑N

i=1 Ŝ(t|X = x ,Z = zi)

Note this is very different from the mean of the hazard functions.

Can perform contrasts to get marginal hazard ratios (or
differences).
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Hazard Example

. stpm2_standsurv, at1(hormon 0) at2(hormon 1) ci ///

> timevar(tt) contrast(ratio) hazard ///

> atvars(h_hormon0 h_hormon1) contrastvar(hratio) per(1000)
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Hazard Example

. stpm2_standsurv, at1(hormon 0) at2(hormon 1) ci ///

> timevar(tt) contrast(ratio) hazard ///

> atvars(h_hormon0 h_hormon1) contrastvar(hratio) per(1000)
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Centiles of the marginal survival function

E [S(tp|X = x ,Z )] = α

Estimated through root finding (using Brent’s root finder) by
solving for tp,

1

N

N∑
i=1

S(tp|X = x ,Z )− α = 0

Can perform contrasts, e.g. difference in median of marginal
survival functions.
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Centiles Example

We can estimate the time at which different proportions have
died within the two groups.

And then take contrasts.

. stpm2_standsurv, at1(hormon 0) at2(hormon 1) ci ///
> timevar(tt) contrast(difference) centile(5(5)25) ///
> atvars(c_hormon0 c_hormon1) contrastvar(c_diff)
. list _centvals c_hormon? c_diff* in 1/5, abbrev(14) noobs

_centvals c_hormon0 c_hormon1 c_diff c_diff_lci c_diff_uci

5 1.5346497 1.7325535 .1979038 .03711724 .35869036
10 2.2820533 2.6152135 .33316013 .05809522 .60822504
15 2.9915436 3.4869162 .4953726 .07588789 .91485732
20 3.7497893 4.4720429 .72225362 .09968314 1.3448241
25 4.6268882 5.6394187 1.0125305 .13849862 1.8865623

Paul C Lambert Simulation 6 September 2018 26



User defined functions

We may need other transformations of standardized functions.

Use userfunction() option for this.

For example, in survival studies the attributable fraction is
defined as,

AF (t) =
E [F (t|X ,Z )]− E [F (t|X = 0,Z )]

E [F (t|X ,Z )]

User function
mata:
function calcAF(at)
{

// at2 is F(t|unexposed,Z)
// at1 is F(t|X,Z)
return((at[1] - at[2])/at[1])

}

Idea for userfunction() option take from Arvid Sjölanders
stdReg R-package[6, 7].
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Attributable Fraction Example

. stpm2_standsurv, at1(.) at2(hormon 1) ci failure ///

> timevar(tt) userfunction(calcAF) userfunctionvar(AF)
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Competing Risks

Sarwar described how when restructuring data using stcrprep

you can use standard survival analysis commands to
estimate/model cause-specific cumulative incidence functions.

You can use stpm2 to directly model cause-specific cumulative
incidence functions (see Lambert et al. [8, 9]).

. stcrprep , events(cause2) every(0.1) wtstpm2 trans(1) ///
keep(hormon enodes age pr_1 size2 size3)

. gen event = failcode == cause2

. stset tstop [iw=weight_c], failure(event==1) enter(tstart)
// fit proportional subhazards model
. stpm2 hormon age enodes pr_1, scale(hazard) df(4)

Flexible parametric version of the Fine and Gray model.

Now stpm2 standsurv will estimate standardized cause-specific
cumulative incidence functions and contrasts.

Multiple rows by id: restrict standardization to first row.
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Standardized CIFs

. bysort pid (_t): gen first = _n==1

. range tt 0 10 101
(16,241 missing values generated)
. stpm2_standsurv if first, at1(hormon 1) at2(hormon 0) timevar(tt) ///
> ci failure contrast(difference)
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Standardized CIFs

. bysort pid (_t): gen first = _n==1

. range tt 0 10 101
(16,241 missing values generated)
. stpm2_standsurv if first, at1(hormon 1) at2(hormon 0) timevar(tt) ///
> ci failure contrast(difference)
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Things I have not had time to mention...

Standardized relative survival and related measures

Standardizing to an external population (indweights option).
Avoidable deaths

Fit model with IPW weights and then standardize.

Mediation analysis (simple).

Code exactly the same with time-dependent effects.

Survival model can be as complex as you want, interactions with
exposure, confounders and time. As long as we can predict a
survival function.

For epidemiologists already fitting survival models (probably Cox) and
reporting adjusted hazard ratios, it is not a huge leap to obtain
alternative (and potentially more useful) estimates by reporting
standardized estimates and contrasts.
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