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Introduction

Introduction

Testing for unit roots, or nonstationary behavior, in economic time
series has been a prominent component of time series econometrics
since Granger and Newbold (J. Econometrics, 1974) introduced the
concept of spurious regressions, and Nelson and Plosser (J. Monetary
Econ., 1982) presented evidence of its relevance for a large set of
macroeconomic series.

The underlying concern in determining whether a time series exhibits
stationary (I(0)) behavior or nonstationary, unit root (I(1)) behavior can
be expressed in terms of deterministic versus stochastic trends.
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Introduction

Consider the time series model

yt = α + ρyt−1 + γt + εt (1)

Depending on the value of ρ, this could be a model of a stochastic and
a deterministic trend. If ρ = 1, the process contains a stochastic trend.

If ρ lies within the unit circle, y could be rendered covariance stationary
by detrending: that is, regressing y on trend t and saving the residuals
from that regression as y∗. The y∗ series will have a constant mean,
and will no longer contain a trend.

Baum, Otero (BC/DIW, U. del Rosario) Leybourne–Taylor seasonal unit root tests London 2018 3 / 32



Introduction

Consider the time series model

yt = α + ρyt−1 + γt + εt (1)

Depending on the value of ρ, this could be a model of a stochastic and
a deterministic trend. If ρ = 1, the process contains a stochastic trend.

If ρ lies within the unit circle, y could be rendered covariance stationary
by detrending: that is, regressing y on trend t and saving the residuals
from that regression as y∗. The y∗ series will have a constant mean,
and will no longer contain a trend.

Baum, Otero (BC/DIW, U. del Rosario) Leybourne–Taylor seasonal unit root tests London 2018 3 / 32



Introduction

However, if ρ = 1, the series contains a unit root, and that detrending
regression will not remove a stochastic trend from the series. We can
rewrite the model as

∆yt = α + γt + εt (2)

In that case, if α = γ = 0, the y series follows a pure random walk, and
is therefore a nonstationary (or I(1)) process. If α 6= 0, the series
follows a random walk with drift. By definition, the level series contains
a stochastic trend, which can only be removed by first differencing the
y series.

If γ 6= 0, the y series follows a random walk with a quadratic trend. The
proper transformation to remove the stochastic trend is the regression
of ∆y on t . The residuals from that series, ∆y∗, will be stationary, and
will no longer contain a trend.
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Introduction

On the other hand, if ρ lies within the unit circle, differencing the level
equation will remove the constant α:

∆yt = ρ∆yt−1 + γ + ∆εt (3)

but the constant term in the differenced series is the trend coefficient in
the level series, so that the trend has not been removed. Furthermore,
if εt is i .i .d ., the ∆εt process is now a first-order moving average
(MA(1)), and its elements are no longer independent.
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Introduction

It follows, then, that our concern over the order of integration of a time
series—whether it is I(0) or I(1)—relates to how we should work with
that series in order to render it covariance stationary.

If it contains a deterministic trend, it should be detrended, as
differencing will not remove the trend in the level series.
If it contains a stochastic trend, it should be differenced, as
detrending will not make the series stationary.

In order to use the series in an estimated model, we must be able to
determine its order of integration.
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Introduction

This elementary discussion of stationarity considers how we might
treat one common feature of a time series, the trend, as deterministic
or stochastic.

The standard Unobserved Components decomposition of a time series
(see [TS] ucm) specifies that the series contains four components:
Trend, Seasonal, Cyclical, and Irregular.

Just as we may be concerned about the identification of a trend in the
model as deterministic or stochastic, we may need to consider the
possibility that a seasonal component of a time series may be either
deterministic or stochastic: that is, the series may exhibit seasonal unit
roots. We now turn to consideration of that feature of the series.
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Seasonal unit root tests

Seasonal unit root tests

A key contribution to the literature on seasonal unit root tests is the
paper by Hylleberg, Engle, Granger, and Yoo (J. Econometrics, 1990),
commonly known as HEGY. As del Barrio Castro et al. (Stata J., 2016)
point out, “The HEGY approach has become the most popular one to
test for the presence of seasonal unit roots.”

If seasonality is considered as a deterministic component of a time
series y , the series may be deseasonalized by regressing y on a set of
seasonal indicator variables: 3 for quarterly data, or 11 for monthly
data. If the y series is trending, a time trend can also be included. The
residuals from this regression, y∗, are a deseasonalized (or
deseasonalized and detrended) series.
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Seasonal unit root tests

However, if the seasonality is considered stochastic rather than
deterministic, a procedure such as HEGY must be used to test for
seasonal unit roots.

As with other unit root tests, you must choose the deterministic
components to be included in the HEGY regression. The authors
recommend that the model contain a set of seasonal indicators and
constant. A trend could also be included. Analogous to the augmented
Dickey–Fuller test or the [TS] dfgls test of Elliott, Rothenberg, Stock, a
set of lagged fourth differences of the series may be included in the
HEGY regression.
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Seasonal unit root tests

The HEGY model is based on a potentially infinite autoregression

φ(B)xt = εt (4)

where B is the backshift operator. All of the roots of φ(B) = 0 lie
outside the unit circle; some may be complex conjugate pairs.
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Seasonal unit root tests

For quarterly data, with four seasons per year, this may be written as

(1− B4)xt = εt (5)

and the polynomial (1− B4) can be expressed as

(1− B4) = (1− B)(1 + b)(1− iB)(1 + iB) (6)

where in the presence of unit roots, the roots of 1,−1, i ,−i correspond
to the zero frequency, 1/2 cycle per quarter (2 cycles per year) and two
instances of 1/4 cycle per quarter (one cycle per year).
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Seasonal unit root tests Testing for seasonal unit roots

Testing for seasonal unit roots

The HEGY testing strategy is then implemented by running a simple
regression of (1− B4)xt on the lagged values of four terms which are
combinations of the four lags of x :

y1t = xt−1 + xt−2 + xt−3 + xt−4 (7)
y2t = −xt−1 + xt−2 − xt−3 + xt−4

y3t = −yt−2 + yt−4

y4t = −yt−1 + yt−3

This regression can be augmented by deterministic components as
well.
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Seasonal unit root tests Testing for seasonal unit roots

The regression coefficients in

(1− B4)xt = π1y1,t−1 + π2y2,t−1 + π3y3,t−1 + π4y4,t−1 (8)

can then be used to carry out the HEGY tests. To test for a root of 1 at
the zero frequency, we can merely test π1 = 0. To test for a root of −1
at the Nyquist frequency, we can test π2 = 0. For the complex
conjugate pair, we can do a joint test on π3 and π4.

There will be no seasonal unit roots if π2 and either π3 or π4 are
different from zero, implying that we need the rejection of a both a test
for π2 and a joint test for π3 and π4.
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Seasonal unit root tests Testing for seasonal unit roots

The first implementation of HEGY in Stata was provided by Baum and
Sperling (SSC, 2001); their hegy4 routine computed HEGY tests, as
described above, for quarterly data.

Depalo provided the sroot routine for quarterly data in a 2009 Stata
Journal article. Unit roots are allowed to be at seasonal frequencies
rather than only at frequency zero. The null hypothesis is that the
variable contains a unit root at that frequency, and the alternative is
that the variable was generated by a stationary process. If the constant
is excluded, the null defines a pure random walk. When a constant and
trend are included, the null is a random walk with drift.

Baum, Otero (BC/DIW, U. del Rosario) Leybourne–Taylor seasonal unit root tests London 2018 14 / 32



Seasonal unit root tests Testing for seasonal unit roots

The first implementation of HEGY in Stata was provided by Baum and
Sperling (SSC, 2001); their hegy4 routine computed HEGY tests, as
described above, for quarterly data.

Depalo provided the sroot routine for quarterly data in a 2009 Stata
Journal article. Unit roots are allowed to be at seasonal frequencies
rather than only at frequency zero. The null hypothesis is that the
variable contains a unit root at that frequency, and the alternative is
that the variable was generated by a stationary process. If the constant
is excluded, the null defines a pure random walk. When a constant and
trend are included, the null is a random walk with drift.

Baum, Otero (BC/DIW, U. del Rosario) Leybourne–Taylor seasonal unit root tests London 2018 14 / 32



Seasonal unit root tests Testing for seasonal unit roots

The most recent published implementation of the HEGY test for Stata
was provided by del Barrio Castro, Bodnar and Sansó in a 2016 Stata
Journal article. Their hegy routine, handles both quarterly and
monthly seasonality and allows for detrending via OLS and GLS,
analogous to [TS] dfgls for standard unit root tests as proposed by
Rodrigues and Taylor (J. Econometrics, 2007).
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Seasonal unit root tests Testing for seasonal unit roots

In their 2016 article, del Barrio Castro et al. define the data generating
process of a seasonal time series as

ySt+s = µSt+s + xSt+s (9)
α(L)xSt+s = uSt+s

where S is the number of seasons (4 or 12), s = (1− S), . . . ,0 and
T = 1, . . .N, the number of years of data.

The time series may be decomposed into the deterministic part µ and
the stochastic part x . α(L) is a polynomial of order S in the lag
operator. The object of HEGY is to test for the presence of unit roots in
that polynomial.
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The Leybourne–Taylor seasonal unit root test

The Leybourne–Taylor seasonal unit root test

The Leybourne–Taylor test, presented in Journal of Time Series
Analysis (2003), leverages the HEGY test by employing both forward
and reverse regressions to derive the test statistics.

This innovation parallels the development of Leybourne’s (OBES,
1995) ADFmax unit root test. That test, which we implemented as the
Stata routine adfmaxur, is described in our 2018 Stata Journal article.

The adfmaxur test involves running Dickey–Fuller regressions using
forward and reverse realizations of the time series. According to
Leybourne, this test exhibits greater power than the standard ADF test,
so it is more likely to reject a false unit root hypothesis.
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The Leybourne–Taylor seasonal unit root test

Leybourne and Taylor (2003) claim that a similar improvement in power
of the HEGY test can be achieved by basing the seasonal unit root test
statistics on forward and reverse realizations of the time series.

Their article presents finite-sample critical values for quarterly data as
well as asymptotic critical values. They state that “Monte Carlo
simulation of the finite-sample size and power properties of the new
tests reveals that, overall, they perform rather better than extant tests
of the seasonal unit root hypothesis.”
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The Leybourne–Taylor seasonal unit root test

In their formulation, Leybourne and Taylor consider a pure AR process
for data containing S seasons:

α(L)[xt − µt ] = ut , t = S + 1, . . . . ,ST (10)

µt =
S∑

j=1

(γjDj,t + δj [Dj,t ]t ])

where Dj,t , j = 1, . . . ,S are seasonal indicator variables,
α(L) = 1−

∑S
j=1 αjLj and the error ut is assumed to follow an AR(p)

process.
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The Leybourne–Taylor seasonal unit root test

This defines three cases of interest:
1 Seasonal intercepts, no trend: δj = 0 ∀j
2 Seasonal intercepts, constant trend: δj = δ ∀j
3 Seasonal intercepts and trends: γj , δj unrestricted ∀j .
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The Leybourne–Taylor seasonal unit root test

As presented above, the HEGY tests involve the computation of both
t-statistics for some of the estimated coefficients and F -statistics for
joint tests on one or more pairs of coefficients.

In the Leybourne–Taylor strategy, where both forward and reverse
regressions are estimated, the resulting test statistic are based on the
maximum t-statistics and the minimum F -statistics from the forward
and reverse regression estimates.

The t statistic rejects for large negative values of the statistic,
analogous to Dickey–Fuller statistics, while the F statistic rejects for
large positive values.
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The Leybourne–Taylor seasonal unit root test Dealing with lag order selection

Dealing with lag order selection

Seasonal unit root tests are customarily augmented with lags of the
dependent variable, just as Dickey–Fuller or [TS] dfgls tests are
customarily augmented.

We consider that the selection of lag order may be an important
element of unit root testing, as the method used for lag order selection
may affect the finite-sample critical values.
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The Leybourne–Taylor seasonal unit root test Dealing with lag order selection

We have presented evidence of this sensitivity for conventional unit
root tests: the Elliot–Rothenberg–Stock [TS] dfgls test, using our
ersur routine (Stata J., 2017) and the Leybourne ADFmax test, using
our adfmaxur routine (Stata J.,, 2018).

In the current study, we extend the analysis of lag order selection and
how it affects inference to the seasonal unit root test of Leybourne and
Taylor, complementing the efforts of del Barrio Castro et al.. in their
hegy routine.
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The Monte Carlo experiment

The Monte Carlo experiment

Response surface estimates are generated with a Monte Carlo
simulation experiment similar to that used by Otero and Smith
(Comp.Stat., 2012).
Assume that yt is a unit root process with standard Normal errors
and a sample of T + 4 observations, with T ranging from 40 to
5000 (37 sample sizes).
The number of lagged differences of yt , p, varies between 0 and 8.
The experiment defines 296 combinations of T and p for each of
the three specifications of the test, and involves 100,000 Monte
Carlo replications.
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The Monte Carlo experiment

Critical values are computed for each of 221 significance levels:
0.0001,0.0002, . . . ,0.9998,0.9999 for both the detrended and
demeaned cases.
Response surface models are then estimated for each
significance level.
The functional form of these models follows MacKinnon (1991),
Cheung and Lai (JBES, 1995; OBES, 1995) and Harvey and Van
Dijk (CSDA, 2006), in which the critical values are regressed on
an intercept term and power functions of 1

T and p
T .
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The Monte Carlo experiment

The chosen functional form is:

CV l
T ,p = θl

∞ +
4∑

i=1

θl
i

(
1
T

)i

+
4∑

i=1

φl
i

(
pi

T

)
+ εl , (11)

where CV l
T ,p is the critical value estimate at significance level l , T

refers to the number of observations on ∆yt , which is one less than the
total number of available observations, and p is the number of lags of
the dependent variable that are included to account for residual serial
correlation.

Note that the larger the number of observations, T , the weaker is the
dependence of the critical values on the lag truncation p. Also, as
T →∞ the intercept term, θl

∞, can be thought of as an estimate of the
corresponding asymptotic critical value.
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Dealing with endogenous lag order

Dealing with endogenous lag order

The tabulated response surface values can be used to obtain
critical values for any given T and fixed lag order.
In practice the lag order, p, is rarely fixed by the user, but rather
chosen endogenously using a data-dependent procedure such as
the information criteria of Akaike and Schwarz, AIC and SIC
respectively.
The optimal number of lags is determined by varying p, the
number of augmented lags of the dependent variable, between
pmax and 0 lags, and choosing the best model according to the
information criterion that is being employed.
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Dealing with endogenous lag order

We also consider another data-dependent procedure to optimally
select p, which is commonly referred to as the general-to-specific
(GTS) algorithm of Campbell and Perron (1991), Hall (JBES,
1994) and Ng and Perron (JASA, 1995).
This algorithm starts by setting some upper bound on p, let us say
pmax, where pmax = 0, 1, 2, ..., 8, estimating the equation with
p = pmax, and testing the statistical significance of bpmax .
If this coefficient is statistically significant, for instance using a
significance level of 5% (denoted GTS5) or 10% (denoted GTS10),
one chooses p = pmax. Otherwise, the order of the estimated
autoregression is reduced by one until the coefficient on the last
included lag is statistically different from zero.
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Dealing with endogenous lag order

To obtain p-values of the Leybourne–Taylor test statistic, we follow
MacKinnon (JBES, 1994; App. Econometrics, 1996) by estimating the
regression:

Φ−1(l) = γ l
0 + γ l

1ĈV l + γ l
2

(
ĈV l

)2
+ υl , (12)

where Φ−1 is the inverse of the cumulative standard normal distribution
at each of the 221 quantiles, and ĈV l is the fitted value from (11) at
the l quantile. Following Harvey and van Dijk (CSDA, 2006), equation
(12) is estimated by OLS using 15 observations. Approximate p-values
of the Leybourne–Taylor test statistic can then be obtained as:

pvalue = Φ
(
γ̂ l

0 + γ̂ l
1ERS (p) + γ̂ l

2 (ERS (p))2
)
, (13)

where γ̂ l
0, γ̂ l

1 and γ̂ l
2 are the OLS parameter estimates from (12).
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Implementation issues

Implementation issues

The result of the Monte Carlo experiment is a 221× 136 matrix,
with the rows indexed by the quantile and the columns
representing combinations of lag order selection method, model
specification, and sample size.
Although it would be possible to include this as a Stata matrix
coded into the ado-file, that appeared to be a very inelegant
solution.
Accordingly, the matrix was stored as a binary matrix using Mata’s
fputmatrix() function, and the ado-file uses Mata’s fopen()
and fgetmatrix() functions to retrieve it from the PLUS
directory.
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Implementation issues

The table lookup routine, and the regression referenced in
equation 13, is implemented as a Mata function contained in
ltsur.ado.
Our ltsur routine is still under development and validation. At
present, it only provides the Leybourne–Taylor seasonal unit root
test for quarterly data. Just as HEGY can be applied to monthly
data, as available in del Barrio Castro et al., our analysis can be
extended to analysis of monthly seasonals.
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Summary discussion

Summary discussion

The Leybourne–Taylor seasonal unit root test is claimed to provide
improvements in size and power over the HEGY test.
As we demonstrated for the Elliott–Rothenberg–Stock [TS] dfgls
test and the Leybourne ADFmax test, the choice of lag order
selection method can have a considerable impact on significance
levels of the test.
Our implementation of the Leybourne–Taylor test, soon to be
available from SSC, will make it possible to contrast its findings
with that of the HEGY test.

Baum, Otero (BC/DIW, U. del Rosario) Leybourne–Taylor seasonal unit root tests London 2018 32 / 32



Summary discussion

Summary discussion

The Leybourne–Taylor seasonal unit root test is claimed to provide
improvements in size and power over the HEGY test.
As we demonstrated for the Elliott–Rothenberg–Stock [TS] dfgls
test and the Leybourne ADFmax test, the choice of lag order
selection method can have a considerable impact on significance
levels of the test.
Our implementation of the Leybourne–Taylor test, soon to be
available from SSC, will make it possible to contrast its findings
with that of the HEGY test.

Baum, Otero (BC/DIW, U. del Rosario) Leybourne–Taylor seasonal unit root tests London 2018 32 / 32



Summary discussion

Summary discussion

The Leybourne–Taylor seasonal unit root test is claimed to provide
improvements in size and power over the HEGY test.
As we demonstrated for the Elliott–Rothenberg–Stock [TS] dfgls
test and the Leybourne ADFmax test, the choice of lag order
selection method can have a considerable impact on significance
levels of the test.
Our implementation of the Leybourne–Taylor test, soon to be
available from SSC, will make it possible to contrast its findings
with that of the HEGY test.

Baum, Otero (BC/DIW, U. del Rosario) Leybourne–Taylor seasonal unit root tests London 2018 32 / 32


	Introduction
	Seasonal unit root tests
	Testing for seasonal unit roots

	The Leybourne–Taylor seasonal unit root test
	Dealing with lag order selection

	The Monte Carlo experiment
	Dealing with endogenous lag order
	Implementation issues
	Summary discussion

