Nonlinear mixed-effects models using Stata

Yulia Marchenko

Executive Director of Statistics StataCorp LLC

2018 UK Stata Conference

- What is NLMEM?
- Simple NLMEM
- Residual covariance structures
- Heteroskedasticity
- Linear combinations and random coefficients
- Three-level model: CES production function
- Pharmacokinetic model
- Nonlinear marginal models
- Summary
- References

What is NLMEM?

Introduction to NLMEM

- Nonlinear mixed-effects models (NLMEMs)
 - mixed effects = fixed effects + random effects
- Nonlinear multilevel models
- Nonlinear hierarchical models

Applications

NLMEMs are popular in studies of biological and agricultural growth processes, population pharmacokinetics, bioassays, and more. For example, NLMEMs have been used to model drug absorption in the body, intensity of earthquakes, and growth of plants.

What is NLMEM?

Two ways of thinking: Nonlinear regression + REs

• Nonlinear regression:

$$y = \frac{1}{\beta_1 + \beta_2 x + \beta_3 x^2} + \epsilon$$

where $\epsilon \sim N(0, \sigma^2)$.

• Let, e.g., β_1 vary randomly across G groups:

$$\beta_1 = \beta_{1j} = b_1 + u_j, \ j = 1, 2, \dots, G$$

where $u_j \sim N(0, \sigma_u^2)$.

- Variance components: error variance σ^2 and between-group variance σ_u^2 .
- Coefficients β_2 and β_3 can also be group-specific.

• Alternatively, consider a linear mixed-effects model:

$$y_{ij} = \beta_1 + \beta_2 x_{ij} + \beta_3 x_{ij}^2 + u_j + \epsilon_{ij}$$

where $\epsilon_{ij} \sim N(0, \sigma^2)$ and $u_j \sim N(0, \sigma_u^2)$.

• In the nonlinear mixed-effects model

$$y_{ij} = \frac{1}{\beta_1 + \beta_2 x_{ij} + \beta_3 x_{ij}^2 + u_j} + \epsilon_{ij}$$

all coefficients and random intercept u_j enter nonlinearly.

Simple NLMEM

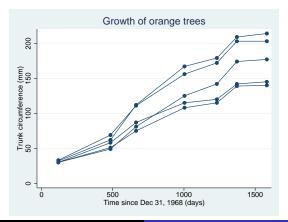
Growth of orange trees

Simple NLMEM: Growth of orange trees

. webuse orange

(Growth of orange trees (Draper and Smith, 1998))

. twoway connected circumf age, connect(L) title(Growth of orange trees)



Yulia Marchenko (StataCorp)

• Consider the following nonlinear growth model:

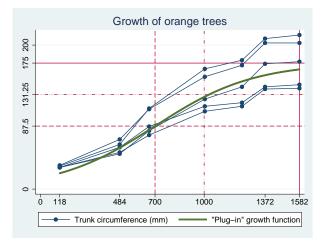
$$\texttt{circumf}_{ij} = \frac{\beta_1}{1 + \exp\left\{-\left(\texttt{age}_{ij} - \beta_2\right)/\beta_3\right\}} + \epsilon_{ij}$$

where $\epsilon_{ij} \sim N(0, \sigma^2)$.

- β_1 is the average asymptotic trunk circumference of trees as age $\rightarrow \infty$.
- β_2 estimates the age at which a tree attains half of β_1 .
- β_3 represents the number of days it takes for a tree to grow from 50% to about 73% of its average asymptotic trunk circumference β_1 .

Simple NLMEM

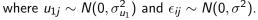
Graphical representation of parameters



- $\beta_1 \approx 175$ mm, $\beta_2 \approx 700$ days, and $\beta_3 \approx 1,000 700 = 300$ days.
- Notice that the variability between trees increases with age. state 15

- Let's incorporate the between-tree variability into the model.
- Consider the following two-level nonlinear growth model (Pinheiro and Bates 2000):

$$\operatorname{circumf}_{ij} = \frac{\beta_1 + u_{1j}}{1 + \exp\left\{-\left(\operatorname{age}_{ij} - \beta_2\right)/\beta_3\right\}} + \epsilon_{ij}$$
ore $u_{1i} \sim N(0, \sigma^2)$ and $\epsilon_{ii} \sim N(0, \sigma^2)$



Simple NLMEM

Two-level nonlinear growth model

• We use menl to fit the model.

```
. menl circumf = ({b1}+{U1[tree]})/(1+exp(-(age-{b2})/{b3}))
```

```
Mixed-effects ML nonlinear regression
Group variable: tree
```

Number of obs Number of groups	= =	35 5
Obs per group:		
min	=	7
avg	=	7.0

```
max = 7
```

Linearization log likelihood = -131.58458

circumf	Coef.	Std. Err.	z	P> z	[95% Conf.	Interval]
/b1	191.049	16.15403	11.83	0.000	159.3877	222.7103
/b2	722.556	35.15082	20.56	0.000	653.6616	791.4503
/b3	344.1624	27.14739	12.68	0.000	290.9545	397.3703

Random-effects Parameters	Estimate	Std. Err.	[95% Conf.	Interval]
tree: Identity var(U1)	991.1514	639.4636	279.8776	3510.038
var(Residual)	61.56371	15.89568	37.11466	102.1184

STATA 15

- Similarly, we can let β_2 and β_3 vary across trees.
- We use a more convenient multistage formulation:

$$\texttt{circumf}_{ij} = \frac{\beta_{1j}}{1 + \exp\left\{-\left(\texttt{age}_{ij} - \beta_{2j}\right)/\beta_{3j}\right\}} + \epsilon_{ij}$$

where

$$\beta_{1j} = b_1 + u_{1j}$$

 $\beta_{2j} = b_2 + u_{2j}$
 $\beta_{3j} = b_3 + u_{3j}$

and where $u_{1j} \sim N(0, \sigma_{u_1}^2)$, $u_{2j} \sim N(0, \sigma_{u_2}^2)$ and $u_{3j} \sim N(0, \sigma_{u_3}^2)$.

. menl circumf = ({beta1:})/(1+exp(-(age-{beta2	::})/{beta3:})),		
<pre>> define(beta1:{b1}+{U1[tree]})</pre>			
<pre>> define(beta2:{b2}+{U2[tree]})</pre>			
<pre>> define(beta3:{b3}+{U3[tree]})</pre>			
Mixed-effects ML nonlinear regression	Number of obs	=	35
Group variable: tree	Number of groups	=	5
	Obs per group:		
	min	=	7
	avg	=	7.0
	max	=	7
Linearization log likelihood = -131.55076			

beta1: {b1}+{U1[tree]}
beta2: {b2}+{U2[tree]}
beta3: {b3}+{U3[tree]}

circumf	Coef.	Std. Err.	z	P> z	[95% Conf.	Interval]
/b1	191.1332	15.96228	11.97	0.000	159.8477	222.4187
/b2	722.7144	34.94627	20.68	0.000	654.2209	791.2078
/b3	345.2863	27.70935	12.46	0.000	290.977	399.5956

Random-effects Parameters	Estimate	Std. Err.	[95% Conf.	Interval]
tree: Independent var(U1) var(U2) var(U3)	970.67 140.9707 248.5962	665.4967 2669.433 1397.996	253.2113 1.07e-14 .0040617	3721.004 1.85e+18 1.52e+07
var(Residual)	59.43549	18.44102	32.35519	109.1812

Simple NLMEM

- With only five trees, the previous model is already too rich for these data.
- Otherwise, we could have considered a more complicated covariance structure for the random effects:

$$(u_{1j}, u_{2j}, u_{3j}) \sim \mathsf{MVN}(\mathbf{0}, \mathbf{\Sigma}), \ \mathbf{\Sigma} = \begin{bmatrix} \sigma_{11} & \sigma_{12} & \sigma_{13} \\ \sigma_{12} & \sigma_{22} & \sigma_{23} \\ \sigma_{13} & \sigma_{23} & \sigma_{33} \end{bmatrix}$$

• Or assuming dependence only between some random effects such as u_{1j} and u_{2j} :

$$\mathbf{\Sigma} = \begin{bmatrix} \sigma_{11} & \sigma_{12} & 0\\ \sigma_{12} & \sigma_{22} & 0\\ 0 & 0 & \sigma_{33} \end{bmatrix}$$

And variations of the above.

Simple NLMEM

• For example,

```
. menl circumf = ({beta1:})/(1+exp(-(age-{beta2:})/{beta3:})),
```

- > define(beta1:{b1}+{U1[tree]})
- > define(beta2:{b2}+{U2[tree]})
- > define(beta3:{b3}+{U3[tree]})
- > covariance(U1 U2 U3, unstructured)
- The above is also equivalent to:

. menl ..., ... covariance(U*, unstructured)

• Or, assuming correlation only between U1 and U2

. menl ..., ... covariance(U1 U2, unstructured)

Residual covariance structures

Residual covariance structures

- menl provides flexible modeling of within-group error structures (or residual covariance structures).
- Use option resvariance() to model error heteroskedasticity as a linear, power, or exponential function of other covariates or of predicted values.
- Use option rescorrelation() to model the dependence of the within-group errors as, e.g., AR or MA processes.
- Combine resvariance() and rescorrelation() to build flexible residual covariance structures.

Heteroskedasticity

Growth of soybean plants

Heteroskedasticity: Growth of soybean plants

- Continuing with growth processes, consider the growth of soybean plants.
- Variable weight records an average leaf weight per plant in grams.
- Variable time records the number of days after planting at which plants were weighed.
- The data are obtained from 48 plots.

. webuse soybean (Growth of soybean plants (Davidian and Giltinan, 1995))

Heteroskedasticity

Two-level growth model

• Consider the following growth model:

$$\texttt{weight}_{ij} = \frac{\phi_{1j}}{1 + \exp\left\{-\left(\texttt{time}_{ij} - \phi_{2j}\right)/\phi_{3j}\right\}} + \epsilon_{ij}$$

where

$$\phi_{1j} = b_1 + u_{1j}$$

 $\phi_{2j} = b_2 + u_{2j}$
 $\phi_{3j} = b_3 + u_{3j}$

and where $(u_{1j}, u_{2j}, u_{3j}) \sim \mathrm{MVN}(\mathbf{0}, \boldsymbol{\Sigma})$ with

$$\mathbf{\Sigma} = \begin{bmatrix} \sigma_{11} & \sigma_{12} & \sigma_{13} \\ \sigma_{12} & \sigma_{22} & \sigma_{23} \\ \sigma_{13} & \sigma_{23} & \sigma_{33} \end{bmatrix}$$

and $\epsilon_{ij} \sim N(0, \sigma^2)$.

Heteroskedasticity

menl specification

• We use the following specification of men1:

```
. menl weight = {phi1:}/(1+exp(-(time-{phi2:})/{phi3:})),
> define(phi1: U1[plot], xb)
> define(phi2: U2[plot], xb)
> define(phi3: U3[plot], xb)
> covariance(U1 U2 U3, unstructured)
```

Option

define(phi1: U1[plot], xb)
is essentially a shortcut for

define(phi1: {b1}+{U1[plot]})

• The above shortcut is useful to specify linear combinations.

Heteroskedasticity

menl: Regression coefficients

• Estimates of regression coefficients:

Mixed-effects ML nonlinear regression Group variable: plot				Number o Number o	f obs = f groups =	412 48	
1		1			Obs per	0 1	
					1	min =	8
						avg =	8.6
						max =	10
Linea	rization	log likelihoo	d = -739.83	445			
	phi1:	U1[plot], xł					
	phi2:	U2[plot], xł	D				
	phi3:	U3[plot], xi	D				
	weight	Coef.	Std. Err.	z	P> z	[95% Conf.	Interval]
nhi1							
phi1	_cons	19.25314	.8031811	23.97	0.000	17.67893	20.82734
<u> </u>	_cons	19.25314	.8031811	23.97	0.000	17.67893	20.82734
phi1 phi2	_cons	19.25314 55.01999	.8031811	23.97 75.65	0.000	17.67893	20.82734
<u> </u>							

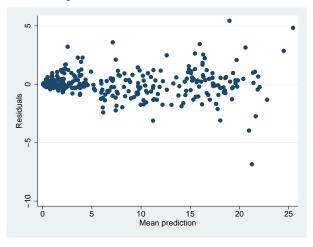
• Estimates of variance components:

Random-effects Parameters	Estimate	Std. Err.	[95% Conf.	Interval]
plot: Unstructured				
var(U1)	27.05081	6.776516	16.55561	44.19929
var(U2)	17.61605	5.317899	9.748766	31.83227
var(U3)	1.972036	.9849825	.7409021	5.248904
cov(U1,U2)	15.73304	5.413365	5.123042	26.34304
cov(U1,U3)	5.193819	2.165586	.9493488	9.438289
cov(U2,U3)	5.649306	2.049458	1.632442	9.66617
var(Residual)	1.262237	.1111686	1.062119	1.50006

• Store estimation results for later comparison

. estimates store nohet

- Heteroskedasticity
 - Residuals-versus-fitted plot
 - Residuals-versus-fitted plot
 - . predict fitweight, yhat
 - . predict res, residuals
 - . scatter res fitweight



Yulia Marchenko (StataCorp)

stata 15

Error variability as a power function of the mean

• Davidian and Giltinan (1995) proposed to model heteroskedasticity (the error variance) in this example as a power function of the mean:

$$\operatorname{Var}(\epsilon_{ij}) = \sigma^2 (\widehat{\operatorname{weight}}_{ij})^{2\delta}$$

where $weight_{ii}$ denotes predicted mean weight values.

• The corresponding menl specification is

```
. menl weight = {phi1:}/(1+exp(-(time-{phi2:})/{phi3:})),
> define(phi1: U1[plot], xb)
> define(phi2: U2[plot], xb)
> define(phi3: U3[plot], xb)
> covariance(U1 U2 U3, unstructured)
> resvariance(power _yhat, noconstant)
```


Heteroskedasticity

menl, resvar(power): Regression coefficients

• Estimates of regression coefficients:

Mixed-effects ML nonlinear regression Group variable: plot				Number (of obs = of groups =	412 48	
Group	Variabio	e: prot			Obs per		40
					r	min =	8
						avg =	8.6
						max =	10
Linea	rization	log likeliho	od = −357.49	9994			
	phi1:	U1[plot], x1	b				
	phi2:	U2[plot], x1	D				
	phi3:	U3[plot], xl	þ				
	weight	Coef.	Std. Err.	z	P> z	[95% Conf.	Interval]
phi1							
piiri	_cons	16.9453	.6097869	27.79	0.000	15.75014	18.14047
phi2							
P	_cons	51.77782	.4625946	111.93	0.000	50.87115	52.68449
phi3							
r0	_cons	7.542116	.0967274	77.97	0.000	7.352534	7.731699

• Estimates of variance components:

.

plot: Unstructured				
var(U1)	11.69387	2.782124	7.335783	18.64105
var(U2)	3.023475	1.293342	1.307347	6.992333
var(U3)	.105363	.0447326	.0458463	.242143
cov(U1,U2)	.7796133	.1937439	.3998823	1.159344
cov(U1,U3)	.9554937	.2547011	.4562887	1.454699
cov(U2,U3)	.3484718	.1110401	.1308373	.5661064
Residual variance:				
Power _yhat				
sigma2	.0496825	.0043247	.0418899	.0589247
delta	.9371342	.0253618	.8874261	.9868424

- Store estimation results for comparison
 - . estimates store het

-Model comparison

• Likelihood-ratio test:

. lrtest het nohet Likelihood-ratio test (Assumption: nohet nested in het)

LR chi2(1) = 764.67 Prob > chi2 = 0.0000

• Information criteria:

. estimates stats het nohet

Akaike's information criterion and Bayesian information criterion

Model	Obs	11(null)	ll(model)	df	AIC	BIC
het	412	:	-357.4999	11	736.9999	781.2311
nohet	412		-739.8344	10	1499.669	1539.879

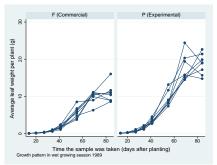
Note: N=Obs used in calculating BIC; see [R] BIC note.

• A heteroskedastic model fits data better.

Linear combinations and random coefficients

Linear combinations and random coefficients

- The actual objective of the soybean study was to compare the growth patterns of two genotypes of soybean plants in three types of growing seasons.
- Genotypes, variety: commercial variety F and experimental variety P
- Growing seasons, year: dry (1988), wet (1989), and normal (1990).



Yulia Marchenko (StataCorp)

• We can include the main effects of genotypes and of years, and their interaction in the equation for the asymptotic rate:

$$\phi_{1j} = b_1 + \boldsymbol{\beta}_G^{\top} \mathbf{G} + \boldsymbol{\beta}_Y^{\top} \mathbf{Y} + \dots + u_{1j}$$

menl specification:

```
. menl weight = {phi1:}/(1+exp(-(time-{phi2:})/{phi3:})),
> define(phi1: i.variety##i.year U1[plot])
> define(phi2: U2[plot], xb)
> define(phi3: U3[plot], xb)
> covariance(U1 U2 U3, unstructured)
> resvariance(power _yhat, noconstant)
```


• We can also let the coefficients for, e.g., genotypes vary across plots:

$$\phi_{1j} = b_1 + \boldsymbol{\beta}_G^{\top} \mathbf{G} + \boldsymbol{\beta}_Y^{\top} \mathbf{Y} + \dots + u_{1j} + \mathbf{F} \times f_{1j} + \mathbf{P} \times p_{1j}$$

where F and P are genotype indicators and $f_{1j} \sim N(0, \sigma_F^2)$ and $p_{1j} \sim N(0, \sigma_P^2)$.

menl specification:

```
. menl weight = {phi1:}/(1+exp(-(time-{phi2:})/{phi3:})),
> define(phi1: i.variety##i.year U1[plot] 1.variety#F1[plot] 2.variety#P1[plot])
> define(phi2: U2[plot], xb)
> covariance(U1 U2 U3, unstructured)
> resvariance(power _yhat, noconstant)
```

• The i. operator is not allowed with factor variables when specifying random coefficients because a distinct name is required for each random coefficient.

Three-level model: CES production function

Three-level model: CES production function

- Constant elasticity of substitution (CES) production function is used in macroeconomic modeling to model the production process as a function of inputs such as capital and labor.
- It introduces and estimates the CES parameter, which makes it a flexible modeling tool.
- Elasticity of substitution (ES) measures how easy it is to substitute one input such as capital for another such as labor. And constant ES does not depend on input values.
- Other common production functions such as Cobb-Douglas and Leontief can be viewed as special cases of the CES production function. For example, Cobb-Douglas function assumes that ES is 1.

- Consider fictional data on log(production) from the 50 U.S. states plus D.C. divided into 9 regions over the period of 1990 to 2017.
- We wish to fit the CES production function

$$\ln P_{ijt} = \beta_0 - \frac{1}{\rho} \ln \{\delta K_{ijt}^{-\rho} + (1-\delta)L_{ijt}^{-\rho}\} + \epsilon_{ijt}$$

where $\epsilon_{ijt} \sim N(0, \sigma^2)$.

- In P_{ijt}, K_{ijt}, and L_{ijt} are log(production), capital, and labor of state j within region i in year t.
- Parameters: log-factor productivity β_0 , share δ , and ρ is related to the elasticity of substitution $\sigma = 1/(1 + \rho)$.

• We suspect that δ may be affected by regions and states-within-regions:

$$\delta = \delta_{ij} = \delta_0 + u_{1i} + u_{2ij}$$

where $u_{1i} \sim N(0, \sigma_{u_1}^2)$ and $u_{2ij} \sim N(0, \sigma_{u_2}^2)$. u_2 's are nested within u_1 's.

-Three-level model: CES production function

men1: Regression coefficients

. menl lnprod = {b0}-1/{rho}*ln({delta:}*capital^(-{rho})+(1-{delta:})*labor^(-{rho})),
> define(delta: {delta0} + {U1[region]} + {U2[region>state]})

Mixed-effects ML nonlinear reg	gression Number	of obs	=	1,377
--------------------------------	-----------------	--------	---	-------

	No. of	Observations per Group			
Path	Groups	Minimum	Average	Maximum	
region region>state	9 51	108 27	153.0 27.0	216 27	

Linearization log likelihood = 1094.2223

delta: {delta0}+{U1[region]}+{U2[region>state]}

lnprod	Coef.	Std. Err.	z	P> z	[95% Conf.	Interval]
/b0	3.49166	.0040189	868.82	0.000	3.483783	3.499537
/delta0	.3439896	.0490629	7.01	0.000	.2478281	.4401511
/rho	1.109318	.0272072	40.77	0.000	1.055993	1.162644

-Three-level model: CES production function

men1: Variance components

Random-effects Parameters	Estimate	Std. Err.	[95% Conf.	Interval]
region: Identity var(U1)	.0199948	.0102071	.0073517	.0543809
region>state: Identity var(U2)	.0073329	.001642	.004728	.0113729
var(Residual)	.0102169	.0003967	.0094681	.0110248

There is some variability between regions and states-within-regions in the estimates of the share parameter.

Three-level model: CES production function
 Predict region-specific share parameters

• We can predict the share parameter for each region:

```
. predict (delta = {delta:}), relevel(region)
```

. list region delta if region[_n]!=region[_n-1], sep(0)

	region	delta		
1. 163.	New England Mid Atlantic	.2699136		
271.	E North Central	.6366224		
406.	W North Central	.3761043		
595.	South Atlantic	.3879336		
811.	E South Central	.344411		
919.	W South Central	.17091		
1027.	Mountain	.4102365		
1243.	Pacific	.3544133		

Three-level model: CES production function

• We can use nlcom to estimate the ES:

. nlcom (sigma: 1/(1+_b[/rho]))

sigma: 1/(1+_b[/rho])

lnprod	Coef.	Std. Err.	z	P> z	[95% Conf.	Interval]
sigma	.4740868	.006115	77.53	0.000	.4621015	.4860721

• The estimated ES is 0.47, which is less than one meaning that the capital and labor are not very good substitutes in this example. If the labor price increases, substituting capital for labor will not offset the increase in the total expenditure on labor.

Pharmacokinetic model

- Pharmacokinetics (PKs) studies the distribution of drugs within the body and is often referred to as the study of "what the body does with a drug".
- It models drug output based on drug input by summarizing concentration-time measurements, while accounting for patient-specific characteristics.

- Consider data on the antiasthmatic agent theophylline (Boeckmann, Sheiner, and Beal [1994] 2011).
- The drug was administered orally to 12 subjects with the dosage (mg/kg) given on a per weight basis.
- Serum concentrations (in mg/L) were obtained at 11 time points per subject over 25 hours following administration.

Nonlinear mixed-effects models

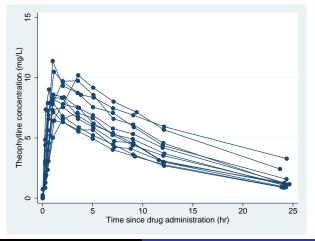
Pharmacokinetic model

PK study of theophylline

• Concentration-time profiles of 12 subjects:

```
. webuse theoph
(Theophylline kinetics (Boeckmann et al., [1994] 2011))
```

. twoway connected conc time, connect(L)



Yulia Marchenko (StataCorp)

STATA 15

One-compartment model

- The concentration rises rapidly initially and then decays exponentially.
- In PKs, such pattern is often described by a so-called one-compartment open model with first-order absorption and elimination. (Body is viewed as one "blood compartment".)
- This model is used for drugs that distribute relatively rapidly throughout the body, which is a reasonable assumption for the kinetics of theophylline after oral administration.

One-compartment model

• One-compartment open model for theophylline kinetics:

$$\texttt{conc}_{ij} = \frac{\texttt{dose}_j k_e k_{a_j}}{\text{Cl}_j \left(k_{a_j} - k_e\right)} \left\{ \exp\left(-k_e \texttt{time}_{ij}\right) - \exp\left(-k_{a_j} \texttt{time}_{ij}\right) \right\} + \epsilon_{ij}$$

for
$$i = 1, ..., 11$$
 and $j = 1, ..., 12$.

 Parameters: elimination rate constant k_e, and, for each subject j, absorption rate constant k_{ai} and clearance Cl_j. One-compartment model

- Elimination rate constant describes the rate at which a drug is removed from the body. It is defined as the fraction of drug in the body eliminated per unit time.
- Absorption rate constant describes the rate at which a drug is absorbed by the body.
- Clearance measures the rate at which a drug is cleared from the plasma. It is defined as the volume of plasma cleared of drug per unit time.

Nonlinear mixed-effects models

Pharmacokinetic model

One-compartment model

• All parameters must be positive, and clearance and absorption rate constant are allowed to vary among subjects:

 $Cl_j = \exp(\beta_0 + u_{0j})$ $k_{a_j} = \exp(\beta_1 + u_{1j})$ $k_e = \exp(\beta_2)$

where $u_{0j} \sim N(0, \sigma_{u_0}^2)$ and $u_{1j} \sim N(0, \sigma_{u_1}^2)$.

• Heteroskedasticity, often present in PK data, is modeled using the power function plus a constant.

$$\operatorname{Var}\left(\epsilon_{ij}\right) = \sigma^{2}\{(\widehat{\operatorname{conc}}_{ij})^{\delta} + c\}^{2}$$

Adding a constant avoids the variance of zero at time = 0, because the concentration is zero at that time.

men1: Coefficients

```
. menl conc =(dose*{ke:}*{ka:}/({cl:}*({ka:}-{ke:})))*(exp(-{ke:}*time)-exp(-{ka:}*time)),
> define(cl: exp({b0}+{U0[subject]}))
> define(ka: exp({b1}+{U1[subject]}))
> define(ke: exp({b2}))
> resvariance(power _vhat) reml
Mixed-effects REML nonlinear regression
                                                 Number of obs
                                                                            132
Group variable: subject
                                                 Number of groups =
                                                                             12
                                                 Obs per group:
                                                               min =
                                                                             11
                                                                           11.0
                                                               avg =
                                                                             11
                                                               max =
Linear. log restricted-likelihood = -172.44384
          cl:
               exp({b0}+{U0[subject]})
               exp({b1}+{U1[subject]})
          ka:
               exp({b2})
          ke:
                    Coef.
                            Std. Err.
                                                 P>|z|
                                                           [95% Conf. Interval]
        conc
                                            z
         /ЪО
                -3.227295
                            .0619113
                                       -52.13
                                                 0.000
                                                          -3.348639
                                                                      -3.105951
         /b1
                 4354519
                            .2072387
                                          2.10
                                                 0.036
                                                           .0292716
                                                                       .8416322
         /b2
                -2.453743
                            .0517991
                                       -47.37
                                                 0.000
                                                          -2.555267
                                                                      -2.352218
```


L_men1: Variance components

Random-effects Parameters	Estimate	Std. Err.	[95% Conf.	Interval]
subject: Independent	0216416	014521	0100624	0770206
var(UO) var(U1)	.0316416	.014531	.0128634	.0778326
Val (01)	.4300303	.2220200	.1703470	1.10/001
Residual variance:				
Power _yhat				
sigma2	.1015759	.086535	.0191263	.5394491
delta	.3106636	.2466547	1727707	.7940979
	.7150935	.3745256	.2561837	1.996063

menl specification

- In the previous menl model, we used restricted maximum likelihood estimation (REML) via option reml instead of the default maximum likelihood (ML) estimation to account for a moderate number of subjects.
- We specified **nonlinear** functions of model parameters in the define() options.

Nonlinear marginal models

Nonlinear marginal models

- As of update 06nov2017 to Stata 15, you can also use menl to fit nonlinear marginal models.
- These models do not introduce random effects but instead model the within-group error covariance structure directly.
- See suboption group() available within options resvariance() and rescorrelation() and example 17 in [ME] menl.
- You can think of these models as nonlinear models which relax the assumption of i.i.d. errors.

Summary

- menl fits NLMEMs; see [ME] menl.
- menl implements the Lindstrom-Bates method, which is based on the linearization of the nonlinear mean function with respect to fixed and random effects.
- menl supports ML and REML estimation and provides flexible random-effects and residual covariance structures.
- menl supports single-stage and multistage specifications.
- You can predict random effects and their standard errors, group-specific nonlinear parameters, and more after estimation; see [ME] menl postestimation.
- NLMEMs are known to be sensitive to initial values. menl provides default, but for some models you may need to specify your own. Use option initial().
- NLMEMs are known to have difficulty converging or converging to a local maximum. Trying different initial values may help.

References

Boeckmann, A. J., L. B. Sheiner, and S. L. Beal. [1994] 2011. NONMEM Users Guide, Part V: Introductory Guide. San Francisco: Regents of the University of California. https://nonmem.iconplc.com/nonmem720/guides/v.pdf.

Davidian, M., and D. M. Giltinan. 1995. *Nonlinear Models for Repeated Measurement Data*. Boca Raton, FL: Chapman & Hall/CRC.

Pinheiro, J. C., and D. M. Bates. 2000. *Mixed-Effects Models in S and S-PLUS*. New York: Springer.